|
A discrete cosine transform (DCT) expresses a finite sequence of data points in terms of a sum of cosine functions oscillating at different frequencies. DCTs are important to numerous applications in science and engineering, from lossy compression of audio (e.g. MP3) and images (e.g. JPEG) (where small high-frequency components can be discarded), to spectral methods for the numerical solution of partial differential equations. The use of cosine rather than sine functions is critical for compression, since it turns out (as described below) that fewer cosine functions are needed to approximate a typical signal, whereas for differential equations the cosines express a particular choice of boundary conditions. In particular, a DCT is a Fourier-related transform similar to the discrete Fourier transform (DFT), but using only real numbers. DCTs are equivalent to DFTs of roughly twice the length, operating on real data with even symmetry (since the Fourier transform of a real and even function is real and even), where in some variants the input and/or output data are shifted by half a sample. There are eight standard DCT variants, of which four are common. The most common variant of discrete cosine transform is the type-II DCT, which is often called simply "the DCT", its inverse, the type-III DCT, is correspondingly often called simply "the inverse DCT" or "the IDCT". Two related transforms are the discrete sine transform (DST), which is equivalent to a DFT of real and ''odd'' functions, and the modified discrete cosine transform (MDCT), which is based on a DCT of ''overlapping'' data. == Applications == The DCT, and in particular the DCT-II, is often used in signal and image processing, especially for lossy compression, because it has a strong "energy compaction" property:〔〔 in typical applications, most of the signal information tends to be concentrated in a few low-frequency components of the DCT. For strongly correlated Markov processes, the DCT can approach the compaction efficiency of the Karhunen-Loève transform (which is optimal in the decorrelation sense). As explained below, this stems from the boundary conditions implicit in the cosine functions. A related transform, the ''modified'' discrete cosine transform, or MDCT (based on the DCT-IV), is used in AAC, Vorbis, WMA, and MP3 audio compression. DCTs are also widely employed in solving partial differential equations by spectral methods, where the different variants of the DCT correspond to slightly different even/odd boundary conditions at the two ends of the array. DCTs are also closely related to Chebyshev polynomials, and fast DCT algorithms (below) are used in Chebyshev approximation of arbitrary functions by series of Chebyshev polynomials, for example in Clenshaw–Curtis quadrature. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Discrete cosine transform」の詳細全文を読む スポンサード リンク
|